P300-based brain-computer interface for environmental control: an asynchronous approach.

نویسندگان

  • F Aloise
  • F Schettini
  • P Aricò
  • F Leotta
  • S Salinari
  • D Mattia
  • F Babiloni
  • F Cincotti
چکیده

Brain-computer interface (BCI) systems allow people with severe motor disabilities to communicate and interact with the external world. The P300 potential is one of the most used control signals for EEG-based BCIs. Classic P300-based BCIs work in a synchronous mode; the synchronous control assumes that the user is constantly attending to the stimulation, and the number of stimulation sequences is fixed a priori. This issue is an obstacle for the use of these systems in everyday life; users will be engaged in a continuous control state, their distractions will cause misclassification and the speed of selection will not take into account users' current psychophysical condition. An efficient BCI system should be able to understand the user's intentions from the ongoing EEG instead. Also, it has to refrain from making a selection when the user is engaged in a different activity and it should increase or decrease its speed of selection depending on the current user's state. We addressed these issues by introducing an asynchronous BCI and tested its capabilities for effective environmental monitoring, involving 11 volunteers in three recording sessions. Results show that this BCI system can increase the bit rate during control periods while the system is proved to be very efficient in avoiding false negatives when the users are engaged in other tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users.

Motor disability and/or ageing can prevent individuals from fully enjoying home facilities, thus worsening their quality of life. Advances in the field of accessible user interfaces for domotic appliances can represent a valuable way to improve the independence of these persons. An asynchronous P300-based Brain-Computer Interface (BCI) system was recently validated with the participation of hea...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

GeoSpell: an alternative P300-based speller interface towards no eye gaze required

The speller based on the N by N matrix is the most commonly used approach for text writing in a P300-based Brain Computer Interface. This study presents an alternative P300 speller interface, GeoSpell (Geometric Speller), where stimuli are delivered in a covert attention modality and thus not require eye gaze control. Moreover, the GeoSpell interface allows to avoid the problem of the adjacent ...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neural engineering

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2011